
http://java.sun.com/developer/technicalArticles/javase/mvc/ Nov 04, 2009

Article

Java SE Application Design With MVC

By Robert Eckstein, March 2007

Articles Index

Contents

- What Is Model-View-Controller (MVC)?

- Interaction Between MVC Components

- Modifying the MVC Design

- Using the Modified MVC

- Issues With Application Design

- Common Swing Component Listeners

- Conclusion

- For More Information

What Is Model-View-Controller (MVC)?

If you've programmed with graphical user interface (GUI) libraries in the past 10 years or so, you have likely come across the model-

view-controller (MVC) design. MVC was first introduced by Trygve Reenskaug, a Smalltalk developer at the Xerox Palo Alto

Research Center in 1979, and helps to decouple data access and business logic from the manner in which it is displayed to the

user. More precisely, MVC can be broken down into three elements:

Model - The model represents data and the rules that govern access to and updates of this data. In enterprise software, a

model often serves as a software approximation of a real-world process.

View - The view renders the contents of a model. It specifies exactly how the model data should be presented. If the model

data changes, the view must update its presentation as needed. This can be achieved by using a push model, in which the

view registers itself with the model for change notifications, or a pull model, in which the view is responsible for calling the

model when it needs to retrieve the most current data.

Controller - The controller translates the user's interactions with the view into actions that the model will perform. In a

stand-alone GUI client, user interactions could be button clicks or menu selections, whereas in an enterprise web application,

they appear as and HTTP requests. Depending on the context, a controller may also select a new view -- for

example, a web page of results -- to present back to the user.

Although different architectures allow the three components to interact in different ways, Figure 1 shows a common implementation

of the MVC design pattern, as shown in the Sun BluePrints Catalog.

Figure1. A Common MVC Implementation

Interaction Between MVC Components

This section will take a closer look at one way to implement Figure 1 in the context of an application in the Java Platform, Standard

Edition 6 (Java SE 6). Once the model, view, and controller objects are instantiated, the following occurs:

The view registers as a listener on the model. Any changes to the underlying data of the model immediately result in a

broadcast change notification, which the view receives. This is an example of the push model described earlier. Note that the

model is not aware of the view or the controller -- it simply broadcasts change notifications to all interested listeners.

1.

The controller is bound to the view. This typically means that any user actions that are performed on the view will invoke a

registered listener method in the controller class.

2.

The controller is given a reference to the underlying model.3.

Once a user interacts with the view, the following actions occur:

The view recognizes that a GUI action -- for example, pushing a button or dragging a scroll bar -- has occurred, using a listener

method that is registered to be called when such an action occurs.

1.

The view calls the appropriate method on the controller.2.

The controller accesses the model, possibly updating it in a way appropriate to the user's action.3.

If the model has been altered, it notifies interested listeners, such as the view, of the change. In some architectures, the

controller may also be responsible for updating the view. This is common in Java technology-based enterprise applications.

4.

Figure 2 shows this interaction in more detail.

Figure 2. A Java SE Application Using MVC

As this article mentioned earlier, the model does not carry a reference to the view but instead uses an event-notification model to

notify interested parties of a change. One of the consequences of this powerful design is that the many views can have the same

underlying model. When a change in the data model occurs, each view is notified by a property change event and can update itself

accordingly. For example, Figure 3 shows two views that use the same data model.

Figure 3. Multiple Views Using the Same Model

Modifying the MVC Design

A more recent implementation of the MVC design places the controller between the model and the view. This design, which is

common in the Apple Cocoa framework, is shown in Figure 4.

Figure 4. An MVC Design Placing the Controller Between the Model and the View

The primary difference between this design and the more traditional version of MVC is that the notifications of state changes in

model objects are communicated to the view through the controller. Hence, the controller mediates the flow of data between model

and view objects in both directions. View objects, as always, use the controller to translate user actions into property updates on the

model. In addition, changes in model state are communicated to view objects through an application's controller objects.

Thus, when all three components are instantiated, the view and the model will both register with the controller. Once a user interacts

with the view, the events are nearly identical:

The view recognizes that a GUI action -- for example, pushing a button or dragging a scroll bar -- has occurred, using a listener

method that is registered to be called when such an action occurs.

1.

The view calls the appropriate method on the controller.2.

The controller accesses the model, possibly updating it in a way appropriate to the user's action.3.

If the model has been altered, it notifies interested listeners of the change. However, in this case, the change is sent to the

controller.

4.

Why adopt this design? Using this modified MVC helps to more completely decouple the model from the view. In this case, the

controller can dictate the model properties that it expects to find in one or more models registered with the controller. In addition, it

can also provide the methods that effect the model's property changes for one or more views that are registered with it.

Using the Modified MVC

This section of the article shows you how to put this design into practice, starting with the model. Suppose that you want to paint

some text using a simple display model with five properties. Code Sample 1 shows a simple component that you can use to create

such a model.

Code Sample 1

Note that the rest of the accessors follow the standard JavaBeans model, although they are omitted in Code Sample 1. For

reference, Code Sample 2 shows the underlying class, which simply uses the

 class to register, deregister, and notify interested listeners of changes to the model.

Code Sample 2

The Controller

Between the model and view lies the controller. First, take a look at the code for the abstract controller superclass, as shown in

Code Sample 3.

Code Sample 3

The class contains two objects, which are used to keep track of the models and views that

are registered. Note that whenever a model is registered, the controller also registers itself as a property change listener on the

model. This way, whenever a model changes its state, the method is called and the controller will pass this

event on to the appropriate views.

The final method, , employs some magic to get its work done. In order to keep the models completely

decoupled from the controller, the code samples in this article have employed the Java Reflection API. In this case, when this

method is called with the desired property name, you hunt through the registered models to determine which one contains the

appropriate method. Once you find it, you invoke the method using the new value. If the method is not called, the will

throw a , which the exception handler ignores, allowing the loop to continue.

Code Sample 4 shows the source code for the default controller class. This class consists of only property constants and methods

called by the GUI event listeners of the view.

Code Sample 4

The View

This example will have two views displaying the data from the model: a property-editor view and a graphical page view. Both of

these are implementations of a , inserted into either a or . The dialog box allows the user to update the

values of the model, and the frame panel simply reflects the changes as the final textual display. The author of this article built this

example using the NetBeans Swing GUI Builder, formerly referred to as Project Matisse, to design the GUI forms.

Code Sample 5 shows the source code for the property-editor view, the more interesting of the two. The first section is simply

devoted to initialization of the components, which for the most part was automatically generated by the NetBeans integrated

development environment (IDE) in the method. All of this section is omitted but is present in the downloadable

code. Any other initialization that you need to perform -- in this case, creating custom models for and objects

or adding to the components -- is handled in the method.

Code Sample 5

Note that the automatically generated NetBeans IDE code folds in the source code so that the developer can collapse each of these

sections when it is not needed:

If you're using the NetBeans IDE, this practice is highly recommended.

The second section of the class deals exclusively with the model. In Code Sample 6, a

 method is called by the controller whenever the model reports a state change.

Code Sample 6

Again, this code sample omits portions of the code that are similar to the sections shown.

The final portion consists of the GUI event listeners. Code Sample 7 contains listeners that are called whenever GUI events occur,

such as pushing the button or the spinner buttons, or resetting the text in any of the text fields. These are

largely event listeners that most Swing developers are already familiar with. If you're using the NetBeans IDE, you'll see that the IDE

can automatically generate many of these using the GUI developer.

Code Sample 7

Issues With Application Design

Once the application is up and running, you immediately run into a problem. Consider the following chain of events:

One of the Swing components in the view receives a change, presumably from the user action.1.

The appropriate controller method is called.2.

The model is updated. It notifies the controller of its property change.3.

The view receives a change event from the controller and attempts to reset the value of the appropriate Swing components.4.

The appropriate controller method is called, and the model is updated again.5.

At this point, any of three different scenarios can occur, depending on what Swing component you use and how robust your model

is.

The Swing component that prompted the initial change refuses to update itself the second time, noting that its property state

cannot be updated again while it is in the process of notifying listeners of the initial state change. This primarily occurs when

you use Swing text components.

The model notes that the value of the second update matches that of the first, its current value, and refuses to send a change

notification. This is always a safe programming practice, and it automatically occurs if you use the

class provided in the package. However, it does not keep the model from receiving a redundant update.

No safeguards are in place on either the model or the Swing component, and the program enters an infinite loop.

This issue occurs because the Swing components are autonomous. For example, what happens if the user presses the up arrow of

the component in , incrementing the spinner's value by one? After the value is updated, a GUI

event listener method that is listening for value changes is called, , which in turn calls the

controller and then updates the appropriate property in the model.

With a traditional MVC design, the view would still contain the previous value, and the change in the model would update the view to

the current value. However, there is no need to update the Swing component because it has already reset itself to the correct value

-- it did so before it even passed an event to the controller.

How do you get around this? One way is to write a mechanism that tells the model or the controller not to propagate a change

notification under these circumstances, but this is not a good idea. Remember that more than one view may be listening for changes

on the model. If you shut down the change notification for the model, no other listeners, including other views, will be notified of the

change. In addition, other components in the same view may rely on the property change notification, with a slider and spinner

combination, for example.

Ideally, each Swing component would be aware of its current value and the value that the view is trying to set it to. If they match, no

change notifications will be sent. However, some Swing components include this logic, and others do not. One possible solution is to

check the incoming changed value of the model against the current value stored in the Swing component. If they are identical, there

is no need to reset the value of the Swing component.

Code Sample 8 shows an update of the method to demonstrate this approach.

Code Sample 8

The final example, which uses two delegate views, is shown in Figure 5. The second delegate makes use of the Java 2D libraries to

display the text, which is beyond the scope of this article. However, the source code is relatively easy to follow and is included in the

downloadable source code.

Figure 5. Both Views Attached to a Single Model

Common Swing Component Listeners

As this article has shown throughout, part of the initialization of each delegate or controller requires you to subscribe to various

Swing component events. However, individual Swing components can often generate multiple event types. Table 1 presents some

common listener methods.

Table 1. Common Swing Event Listener Methods

Event to Monitor Swing Event Listener Method

 pressed;

 pressed;

 pressed;

 toggled.

 value

changed.

,

,

 or

 character(s)

are added, changed, or

deleted.

 return

button is pressed, or focus

switches to another

component.

 new entry is

selected. from list.

 editor

(typically a text field)

characters are added,

changed, or deleted.

 return button

is pressed.

 pop-up menu

is about to become visible,

invisible, or be cancelled

without a selection.

 new entry is

selected.

 new tab is

selected.

 adjustment

is made.

 adjustment

is made.

 is about to

become visible, invisible,

or be cancelled without a

selection.

 is about to be

become visible or invisible,

or be cancelled without a

selection.

 (in standard

or pop-up menu) is

selected.

 value is

changed.

Conclusion

MVC is one of the staples of any GUI programmer's toolkit. This article has shown how to implement a variation of the MVC design

using Java SE and the Swing libraries. In addition, it has demonstrated some common issues that programmers may face when

using MVC, as well as listed common Swing component events that any Java platform programmer can use when creating a view.

For More Information

You can download the example source code for this article here.

The original MVC implementation is described in the now-canonical paper Applications Programming in Smalltalk-80: How to

Use Model-View-Controller.

Creating a GUI With Java Swing, also known as The Swing Tutorial, shows you how to get started using the Java Swing

components.

A Swing Architecture Overview gives the inside story on how Swing uses a variant of MVC.

The page Java Blueprints for Model-View-Controller provides a good background on the problem space and various solutions,

even though its target audience is developers using the Java EE platform.

"Applying the Model-View-Controller Design Paradigm in VisualAge for Java" is an excellent article by Scott Stanchfield that

discusses some of common problems and solutions in using MVC with Java technology. A follow-up article, "Advanced Model-

View-Controller Techniques," also points out some best practices to follow when populating models with data from underlying

domain sources.

If you are curious as to how the textual portion of the Java 2D libraries work, take a look at this article.

Rate and Review

Tell us what you think of the content of this page.

 Excellent Good Fair Poor

Comments:

Your email address (no reply is possible without an address):

Sun Privacy Policy

Note: We are not able to respond to all submitted comments.

 Submit »

copyright © Sun Microsystems, Inc

